核酸是生物体内的高分子化合物,包括DNA和RNA两大类。
1868年,瑞士的内科医生Friedrich Miescher从外科医院包扎伤口的绷带上的脓细胞核中提取到一种富含磷元素的酸性化合物,将其称为核质(nuclein);后来他又从鲭鱼精子中分离出类似的物质,并指出它是由一种碱性蛋白质与一种酸性物质组成的,此酸性物质即是现在所知的核酸(nucleic acid)。1944年Oswald Avery,Colin Macleod和Maclyn McCarty发现,一种有夹膜、具致病性的肺炎球菌中提取的核酸桪NA(deoxyribonucleic acid,脱氧核糖核酸),可使另一种无夹膜,不具致病性的肺炎球菌的遗传性状发生改变,转变为有夹膜,具致病性的肺炎球菌,且转化率与DNA纯度呈正相关,若将DNA预先用DNA酶降解,转化就不发生。该项实验彻底纠正了蛋白质携带遗传信息这一错误认识,确立了核酸是遗传物质的重要地位;DNA遗传作用的进一步肯定来自Alfred Hershey和Martha Chase对一个感染大肠杆菌的病毒的研究。即用放谢性同位素32P标记噬菌体DNA,35S标记其蛋白质外壳,再用标记的噬菌体去感染培养的大肠杆菌,结果发现进入细菌体内,使细菌生长、繁殖发生变化的是32P标记的DNA,而不是35S标记的蛋白质,并且新繁殖生成的噬菌体不含35S,只含32P.1953年Watson和Crick创立的DNA双螺旋结构模型,不仅阐明了DNA分子的结构特征,而且提出了DNA作为执行生物遗传功能的分子,从亲代到子代的DNA复制(replication)过程中,遗传信息的传递方式及高度保真性,为遗传学进入分子水平奠定了基础,成为现代分子生物学发展史上最为辉煌的里程碑。后来的研究又发现了另一类核酸桼NA(ribonucleic acid,核糖核酸),RNA在遗传信息的传递中起着重要的作用。从此,核酸研究的进展日新月异,如今,由核酸研究而产生的分子生物学及其基因工程技术已渗透到医药学、农业、化工等领域的各个学科,人类对生命本质的认识进入了一个崭新的天地。
第一节 核酸的化学组成
核酸是生物体内的高分子化合物,包括DNA和RNA两大类。
一、元素组成
组成核酸的元素有C、H、O、N、P等,与蛋白质比较,其组成上有两个特点:一是核酸一般不含元素S,二是核酸中P元素的含量较多并且恒定,约占9~10%.因此,核酸定量测定的经典方法,是以测定P含量来代表核酸量。
二、化学组成与基本单位
核酸经水解可得到很多核苷酸,因此核苷酸是核酸的基本单位。核酸就是由很多单核苷酸聚合形成的多聚核苷酸。核苷酸可被水解产生核苷和磷酸,核苷还可再进一步水解,产生戊糖和含氮碱基(图15-1)。
核苷酸中的碱基均为含氮杂环化合物,它们分别属于嘌呤衍生物和嘧啶衍生物。核苷酸中的嘌呤碱(purine)主要是鸟嘌呤(guanine,G)和腺嘌呤(adenine,A),嘧啶碱(pyrimidine)主要是胞嘧啶(cytosine,C)、尿嘧啶(uracil,U)和胸腺嘧啶(thymine,T)。DNA和RNA都含有鸟嘌呤(G)、腺嘌呤(A)和胞嘧啶(C);胸腺嘧啶(T)一般而言只存在于DNA中,不存在于RNA中;而尿嘧啶(U)只存在于RNA中,不存在于DNA中。它们的化学结构请参见图示。
核酸中五种碱基中的酮基和氨基,均位于碱基环中氮原子的邻位,可以发生酮式一烯醇式或氨基亚氨基之间的结构互变。这种互变异构在基因的突变和生物的进化中具有重要作用。
有些核酸中还含有修饰碱基(modified component),(或稀有碱基,unusual com ponent),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。DNA中的修饰碱基主要见于噬菌体DNA,如5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶hm5C;RNA中以tRNA含修饰碱基最多,如1-甲基腺嘌呤(m1A),2,2一二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等。
嘌呤和嘧啶环中含有共轭双键,对260nm左右波长的紫外光有较强的吸收。碱基的这一特性常被用来对碱基、核苷、核苷酸和核酸进行定性和定量分析。
核酸中的戊糖有核糖(ribose)和脱氧核糖(deoxyribose)两种,分别存在于核糖核苷酸和脱氧核糖核苷酸中。为了与碱基标号相区别,通常将戊糖的C原子编号都加上“′”,如C1′表示糖的第一位碳原子。
戊糖与嘧啶或嘌呤碱以糖苷键连接就称为核苷,通常是戊糖的C1′与嘧啶碱的N1或嘌呤碱的N9相连接。
核苷中戊糖的羟基与磷酸以磷酸酯键连接而成为核苷酸。生物体内的核苷酸大多数是核糖或脱氧核糖的C5′上羟基被磷酸酯化,形成5′核苷酸。核苷酸在5′进一步磷酸化即生成二磷酸核苷和三磷酸核苷。以核糖腺苷酸为例,除AMP外,还有二磷酸腺苷(ADP,adenosine 5′-diphosphate)和三磷酸腺苷(ATP,adenosine 5′-triphosphate)两种形式。核苷酸的二磷酸酯和三磷酸酯多为核苷酸有关代谢的中间产物或者酶活性和代谢的调节物质,以及作为核苷酸有关代谢的中间产物或者酶活性和代谢的调节物质,以及作为生理储能和供能的重要形式。
核苷酸还有环化的形式。它们主要是3′,5′-环化腺苷酸(cAMP,adenosine 3′,5′-cyclicmonophosphate)和3′,5′-环化鸟苷酸(cGMP,guanosine 3′,5′-cyclic monophosphate),化学结构如下。环化核苷酸在细胞内代谢的调节和跨细胞膜信号中起着十分重要的作用。
表: 核苷酸及相应的核苷、碱基名称中英文对照表
核苷酸 | 核苷 | 碱基 |
腺苷酸(AMP) | 腺苷 | 腺嘌呤(A) |
adenosine monophosphate | adenosine | adenine |
脱氧腺苷酸(dAMP) | 脱氧腺苷 | |
deoxydenosine monophosphate | deoxyadenosine | |
鸟苷酸(GMP) | 鸟苷 | 鸟嘌呤(G) |
guanosine monophosphate | guanosine | guanine |
脱氧鸟苷酸(dGMP) | 脱氧鸟苷 | |
deoxyguanosine monophosphate | deoxyguanosine | |
胞苷酸(CMP) | 胞苷 | 胞嘧啶(C) |
cytidine monophosphate | cytidine | cytosine |
胞氧胞苷酸(dCMP) | 脱氧胞苷 | |
deoxycytidine monophosphate | deoxycytidine | |
胸苷酸(TMP/dTMP) | 胸苷 | 胸腺嘧啶(T) |
thymidine monophate | thymidine | thymine |
尿苷酸(UMP) | 尿苷 | 尿嘧啶(U) |
uridine monophosphate | uridine | uracil |