糖原是体内糖的储存形式,主要以肝糖原、肌糖原形式存在。肝糖原的合成与分解主要是为了维持血糖浓度的相对恒定;肌糖原是肌肉糖酵解的主要来源。糖原由许多葡萄糖通过α-1,4-糖苷键(直链)及α-1,6-糖苷键(分枝)相连而成的带有分枝的多糖(图6-11),存在于细胞质中。
糖原合成(glycogenesis)是由葡萄糖合成糖原的过程。反之,糖原分解(glycogenolysis)则是指肝糖原分解为葡萄糖的过程。糖原合成及分解反应都是从糖原分支的非还原性末端开始,分别由两组不同的酶催化。
糖原合成
糖原合成首先以葡萄糖为原料合成尿苷二磷酸葡萄糖(uridine diphosphate glucose,UDP-Glc),在限速酶糖原合酶(glycogen synthase)的作用下,将UDP-Glc转给肝、肌肉中的糖原蛋白(glycogenin)上,延长糖链合成糖原。其次糖链在分支酶的作用下再分支合成多支的糖原。反应可以分为二个阶段:
第一阶段:糖链的延长
游离的葡萄糖不能直接合成糖原,它必须先磷酸化为G-6-P再转变为G-1-P,后者与UTP作用形成UDP-Glc及焦磷酸(PPi)。UDP-Glc是糖原合成的底物,葡萄糖残基的供体,称为活性葡萄糖。UDP-Glc在糖原合酶催化下将葡萄糖残基转移到糖原蛋白中糖原的直链分子非还原端残基上,以α-1,4-糖苷键相连延长糖链。
第二阶段:糖链分支
糖原合酶只能延长糖链,不能形成分支。当直链部分不断加长到超过11个葡萄糖残基时,分支酶可将一段糖链(至少含有6个葡萄糖残基)转移到邻近糖链上,以α-1,6-糖苷键相连接,形成新的分支(图6-13),分支以α-1,4-糖苷键继续延长糖链。
糖原蛋白是一个分子质量为37 kDa的蛋白质,它既是糖链延长的引物,又具有酶活性,在糖原合成起始中具有重要作用(图6-15)。①UDP-Glc提供的一个葡萄糖残基和糖原蛋白上的酪氨酸残基进行共价连接,这一步是由糖原蛋白本身具有的糖基转移酶(glucosyltransferase)所催化的。②结合了一个葡萄糖残基的糖原蛋白和糖原合酶一起三者形成一个牢固的复合物,以后的反应都在这个复合物上进行。③UDP-Glc在糖基转移酶催化下提供葡萄糖残基,糖原合酶催化合成,以α-1,4-糖苷键延长,形成7个葡萄糖残基以上的短链。④随着糖链的延长,糖原合酶最终和糖原蛋白分离。⑤在糖原合酶和分支酶的联合作用下完成糖原的合成,糖原蛋白仍然保留在糖原分子中。
糖原合酶是糖原合成的限速酶,是糖原合成的调节点。糖原蛋白每增加一个葡萄糖残基要消耗2分子ATP(葡萄糖磷酸化以及生成UDP-Glc)。
糖原分解
在限速酶糖原磷酸化酶(glycogen phosphorylase)的催化下,糖原从分支的非还原端开始,逐个分解以α-1,4-糖苷键连接的葡萄糖残基,形成G-1-P。G-1-P转变为G-6-P后,肝及肾中含有葡萄糖-6-磷酸酶,使G-6-P水解变成游离葡萄糖,释放到血液中,维持血糖浓度的相对恒定。由于肌肉组织中不含葡萄糖-6-磷酸酶,肌糖原分解后不能直接转变为血糖,产生的G-6-P在有氧的条件下被有氧氧化彻底分解,在无氧的条件下糖酵解生成乳酸,后者经血循环运到肝脏进行糖异生,再合成葡萄糖或糖原。
当糖原分子的分支被糖原磷酸化酶作用到距分支点只有4个葡萄糖残基时,糖原磷酸化酶不能再发挥作用。此时脱支酶发挥作用,脱支酶具有转寡糖基酶和α-1,6-葡萄糖苷酶两个酶活性:转寡糖基酶将分支上残留的3个葡萄糖残基转移到另外分支的末端糖基上,并进行α-1,4-糖苷键连接;而残留的最后一个葡萄糖残基则通过α-1,6-葡萄糖苷酶水解,生成游离的葡萄糖;分支去除后,糖原磷酸化酶继续催化分解葡萄糖残基形成G-1-P。