酶偶联受体介导的信号转导

酶偶联受体和G蛋白偶联受体一样也是一类跨膜蛋白质,与细胞外信号分子结合的结构域在细胞膜外,细胞内的胞质结构域本身即具有酶活性,或直接与其他酶相关联。已知有5种类型酶偶联受体:①受体鸟苷酸环化酶(receptor guanylyl cyclases);②受体酪氨酸激酶(receptor tyrosine kinases);③酪氨酸激酶相关受体(tyrosine-kinase associated receptors);④受体酪氨酸磷酸酶(receptor tyrosine phosphatases);⑤受体丝氨酸/氨酸激酶(receptor serine/hreonine kinases)。本章只介绍前三种酶偶联受体介导的信号转导系统。

一、受体鸟苷酸环化酶信号转导系统

这类受体与细胞外信号分子结合后,能催化细胞质内cGMP的生成,因该跨膜受体的胞质结构域具有鸟苷酸环化酶活性,催化GTP生成cGMP,cGMP再激活cGMP依赖的蛋白激酶(cGMP dependent protein kinase,G激酶),G激酶能使靶蛋白上的丝氨酸或苏氨酸残基磷酸化,激活靶蛋白。在此信号转导系统中,cGMP是细胞内信号分子。与cAMP信号不同之处是:在cAMP信号途径中联系受体与环化酶的是G蛋白,而在cGMP信号途径中此联系通过受体本身。但在某些细胞中,如视觉细胞,cGMP的生成也通过G蛋白。通过受体鸟苷酸环化酶途径的细胞外信号,有心钠素等。

二、受体酪氨酸激酶信号转导系统

(一) 受体酪氨酸激酶

第一个被确认具有酪氨酸特异的蛋白激酶活性的受体是表皮生长因子(epidermal growth factor,EGF)受体。EGF受体只有一条肽链,约有1200个氨基酸残基。当EGF与EGF受体结合后,受体的细胞质酪氨酸激酶结构域即被激活,激活的酪氨酸激酶能选择性地使受体蛋白本身的酪氨酸残基或其他靶蛋白上的酪氨酸残基磷酸化。现已发现,大多数生长因子和分化因子的受体都属这一类受体,这些受体都可以通过自身磷酸化(auto-phosphorylation)来启动细胞内信号的级联反应。

(二)受体酪氨酸激酶信号转导系统中的其他成分

1.具有SH结构域的蛋白质这类蛋白质不是指含有SH基团(巯基)的蛋白质,而是指最初在Src(一种癌基因)蛋白中发现的一段序列,SH是Src同源性(Src homology)的缩写。已发现有许多种含有SH结构域的蛋白质,如GTP酶激活蛋白(GTPase-activating protein,GAP),磷脂酶C-γ(PLC-γ作用与PLC-β相同),类Src非受体型蛋白酪氨酸激酶Src-like nonreceptor protein tyrosine kinase ),IRS-1等。这些蛋白质都具有两种SH结构域——SH2和SH3。SH2能识别磷酸化的酪氨酸残基,使含有SH2的蛋白质与激活的受体酪氨酸激酶结合。SH3的作用是与细胞内其他蛋白质结合。在具有SH2和SH3的蛋白质中有些是酶蛋白,如上述GAP,PLC-γ等,有的只是作为一种“连接器”,如生长因子受体结合蛋白(growth factor receptor bound protein2, GRB2),它的作用就是作为连接受体酪氨酸激酶和其他蛋白质的桥梁。

2.SOS蛋白(简称SOS)SOS能与GRB2的SH3结构域结合,SOS是一种鸟嘌呤核苷酸交换因子(guanine nucleotide-exchange factor ,GEF),能与Ras蛋白结合,并使原来与Ras结合的GDP交换成GTP。当受体酪氨酸激酶被激活后,通过GRB2的作用;使原来在细胞质中的SOS移位至细胞膜的胞质面,接近膜结合的Ras。

3.Ras蛋白(简称Ras)Ras属于单体GTP酶Ras超家族(Ras superfamily of monomeric GTPase ),是位于细胞膜胞质面的膜结合蛋白。GTP酶激活蛋臼(GAP)能使与Ras结合的GTP水解成GDP而使Ras失活,而鸟嘌呤核苷酸交换因子(GEF)能使与Ras结合的GDP交换为GTP而使Ras激活。Ras在通过受体酪氨酸激酶介导的信号转导中发挥中心作用,是一种关键的成分,这种信号转导控制细胞的生长和分化。Ras的突变使其失去信号转导作用,能引起细胞的恶变。

4.Ras下游的信号介导物被激活的Ras能结合一种具有丝氨酸/氨酸激酶活性的Raf蛋白的N端结构域。与Ras结合的Raf能藉C端结合并磷酸化一种既具有酪氨酸激酶活性又具有丝氨酸激酶活性的蛋白质——MEK。被磷酸化的MEK能使另一种具有丝氨酸/氨酸激酶的蛋白质——MAP激酶(microtubule-associated protein or mitogen-activated protein kinase )磷酸化,并使之激活。激活的MAP激酶磷酸化多种不同的蛋白质,包括转录因子,从而对基因的表达发挥调控作用。

三、酪氨酸激酶相关受体信号系统

JAK-STAT信号转导途径是酪氨酸激酶相关受体信号转导系统中一个比较典型的例子。这是一种比较简单的信号系统,只有三种成分:受体、JAK激酶和STAT。

(一) 酪氨酸激酶相关受体

这类受体包括多种细胞因子(cytokines)的受体,如干扰素受体,白细胞介素2受体等。这类受体本身不具有内在的激酶活性,但是细胞外信号分子与之结合后,能形成二聚体,受体二聚体能与JAK激酶结合,并激活JAK激酶。

(二) JAK激酶

JAK激酶是一族分子,有多种成员,每种成员能特异地和相应的细胞因子受体结合。JAK激酶原来称为Janus激酶(Janus意为看守门户的两面神),因为这种分子上有两个激酶结构域。JAK激酶属酪氨酸激酶,主要的底物是STAT。

(三) STAT

STAT是一类转录因子,是signal transducers and activation of transcription的缩写。目前已知至少有7种STAT,每种STAT分别由相应的JAK激酶激活。STAT的磷酸化导致STAT二聚体的形成,这种二聚体可以是同二聚体或异二聚体。形成二聚体的基础是分别存在于两个STAT上的SH2结构域和磷酸化的酪氨酸残基之间的相互作用。STAT二聚体从细胞质转移到细胞核内,和相应的顺式作用元件结合,调控靶基因的表达。