转运RNA(tRNA)

tRNA(transfer RNA)是蛋白质合成中的接合器分子。tRNA分子有100多种,各可携带一种氨基酸,将其转运到核蛋白体上,供蛋白质合成使用。tRNA是细胞内分子量最小的一类核酸,由70~120核苷酸构成,各种tRNA无论在一级结构上,还是在二、三级结构上均有一些共同特点。tRNA中含有10%~20%的稀有碱基(rare bases),如:甲基化的嘌呤mG、mA,双氢尿嘧啶(DHU)、次黄嘌呤等等。此外,tRNA内还含有一些稀有核苷,如:胸腺嘧啶核糖核苷,假尿嘧啶核苷(Ψ,pseudouridine)等。胸腺嘧啶一般存在于DNA中;在假尿嘧啶核苷中,不是通常嘧啶环中1位氮原子,而是嘧啶环中的5位碳原子与戊糖的1′位碳原子之间形成糖苷键。

tRNA分子内的核苷酸通过碱基互补配对形成多处局部双螺旋结构,未成双螺旋的区带构成所谓的环和襻。现发现的所有tRNA均可呈现图15-14所示的这种所谓的三叶草样(clover leafpattern)二级结构。在此结构中,从5′末端起的第一个环是DHU环,以含二氢尿嘧啶为特征;第二个环为反密码子环,其环中部的三个碱基可以与mRNA中的三联体密码子形成碱基互补配对,构成所谓的反密码子(anticodon),在蛋白质合成中起解读密码子,把正确的氨基酸引入合成位点的作用;第三个环为TΨ环,以含胸腺核苷和假尿苷为特征;在反密码子环与TΨ环之间,往往存在一个襻,由数个乃至二十余个核苷酸组成,所有tRNA3′末端均有相同的CCA-OH结构,tRNA所转运的氨基酸就连接在此末端上。(图15-14A)

图15-14 tRNA的二级与三级结构

A.二级结构(a示反密码环及反密码)

B.三级结构(数字示可能的非常见核苷酸对相互作用)

通过X-射线衍射等结构分析方法,发现tRNA的共同三级结构均呈倒L形(图15-14B),其中3′末端含CCAOH的氨基酸臂位于一端,反密码子环位于另一端,DHU环和TΨ环虽在二级结构上各处一方,但在三级结构上却相互邻近。tRNA三级结构的维系主要是依赖核苷酸之间形成的各种氢键。各种tRNA分子的核苷酸序列和长度相差较大,但其三级结构均相似,提示这种空间结构与tRNA的功能有密切关系。

(三)核蛋白体RNA(rRNA)

核蛋白体RNA(ribosomal RNA)是细胞内含量最多的RNA,约占RNA总量的80%以上,是蛋白质合成机器棗核蛋白体(核糖体)(ribosome)的组成成分。核糖体蛋白(ribosmal protein,rp)有数十种,大多是分子量不大的多肽类,分布在核蛋白体大亚基的蛋白称为rpl,在小亚基的称rps。

原核生物和真核生物的核蛋白体均由易于解聚的大、小亚基组成。对大肠杆菌核蛋白体的研究发现其质量中三分之二是rNRA,三分之一是蛋白质。rRNA分为5S、16S、23S三种。S是大分子物质在超速离心沉降中的一个物理学单位,可反映分子量的大小。小亚基由16SrRNA和21种rps构成,大亚基由5S、23s rRNA和31种 rpl构成。真核生物核蛋白体小业基含18S rRNA和30多种rps,大亚基含28S、5.8S、5S三种rRNA,近50种rpl。各种生物核蛋白体小亚基中的rRNA具有相似的二级结构

(线粒体核蛋白体的结构与原核相似)

无论在试管内或细胞内,大、小亚基都易于组成核蛋白体整体或分离成两部分。几十种多肽是如何互相联结,又怎样与几种rRNA相连的呢?用提纯了的亚基所有的肽和rRNA在试管内混合,发现不需加入酶或ATP就可以自动组装成为有活性的亚基,但rRNA之间却不能互相替代,也即说这种自我组装过程是以rRNA为主导的。虽然所有多肽在组装中也是缺一不可的,但不同的肽可能有酶的作用或起别构效应。现已证明某些核糖体蛋白具有酶的功能,但基中大多数还未弄清其具体作用。